Functions: Basics

In the previous reading we have learnt about relations. In this section we will learn a special type of relation called function. It is one of the most important concepts in mathematics.

We can virtualise a function as a rule which produces new elements out of some given elements. There are many terms such as map or mapping used to denote a function.

<u>Definition</u>: - A relation f from a set A to a set B is said to be a function if every element of set A has one and only one image in set B.

In other words a function f is the relation from a non-empty set A to a non-empty set B such that the domain of f is A and not two distinct order pairs in f have the same first element.

If f is a function from A to B and $(a,b) \in f$ then f(a) = b where b it's called the image of a under f and a is called the pre-image of b under f.

Some functions and their graphs:-

1. <u>Identity function</u>: let R be the set of real numbers. Define the function $f: R \to R$ by y = f(x) = c $x \in R$ The graph is a straight line. It passes through the origin.

2. Constant function : define the function $f : R \to R$ by y = f(x) = c $x \in R$. Here domain of f is R and range is $\{c\}$.

3. **Polynomial function**: A function $f: R \rightarrow R$ is said to be polynomial function for each x in R, $y = f(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$ where n is a non-negative integer and a_0 , a_1 , a_2 , $a_n \in R$ $f(x) = x^2$

Domain of $f = \{x : x \in R\}$

Range of $f = \{x : x \ge 0, x \in R\}$

The graph of f is given by

