Functions: Basics

In the previous reading we have learnt about relations. In this section we will learn a special type of relation called function. It is one of the most important concepts in mathematics.

We can virtualise a function as a rule which produces new elements out of some given elements. There are many terms such as map or mapping used to denote a function.

Definition :- A relation from a set A to a set B is said to be a function if every element of set A has one and only one image in set B.

In other words a function f is the relation from a non-empty set A to a non-empty set B such that the domain of f is A and not two distinct order pairs in f have the same first element.

If f is a function from A to B and $(a, b) \in f$ then $f(a)=b$ where b it's called the image of a under f and a is called the pre-image of b under f.

Some functions and their graphs:-

1. Identity function :- let R be the set of real numbers. Define the function $f: R \rightarrow R$ by $y=f(x)=c \quad x \in R$ The graph is a straight line. It passes through the origin.

2. Constant function : define the function $f: R \rightarrow R$ by $y=f(x)=c$ $x \in R$. Here domain of f is R and range is $\{c\}$.

3. Polynomial function :- A function $f: R \rightarrow R$ is said to be polynomial function for each x in $R, y=f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots \ldots \ldots .+$ $a_{n} x^{n}$ where n is a non- negative integer and $a_{0}, a_{1}, a_{2}, \ldots \ldots \ldots . a_{n} \in R$ $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$

Domain of $f=\{x: x \in R\}$
Range of $f=\{x: x \geq 0, x \in R\}$
The graph of f is given by

$$
f(x)=x^{2}
$$

