Definition of Probability: -

The assumption that all the outcomes are equally likely leads to the following definition of probability.

The probability of an event E, written as $P(E)$, is defined as

$$
P(E)=\frac{\text { number of outcomes favouravle to } E}{\text { total number of possible owtcomes of the experiment }}
$$

Sure event: - an event which always happens is called a sure event or a certain event.
For example: - when we throw a die then the event "getting a number less than 7 ' is a sure event.

The probability of a sure event is 1 .

Impossible event: - an event which never happen is called an impossible event.
For example, when we throw a die, then the event getting a number greater than 6 is an impossible event.

The probability of an impossible event is 0.
Elementary event: - an event which has one (favourable) outcome from the sample space is called an elementary event.

An event which has more than one favourable outcome from the sample space is called a compound event.

For example: - when we throw a die then the event getting number S is an elementary event where as the event getting an even number (2,4 or 6) is a compound event.

Complementary event: - if E is an event, then the event "not E " is complementary event of E .

For example: - when we throw a die, let E be the event getting a number less than or equal to 2 , then the event "not E" i.e. getting a number greater than 2 is complementary event of E.

Complement of E is denoted by $\overline{\mathrm{E}}$ or E^{c}
Let E be an event, then the number of outcome favourable to e is greater than or equal to zero and is less than or equal to total number of outcomes.
it follows that,

$$
0 \leq P(E) \leq 1
$$

let E be an event than we have,
i) $0 \leq P(E) \leq 1$
ii) $P(\bar{E})=1-P(E)$
iii) $P(E)=1-P(\bar{E})$
iv) $P(E)+P(\bar{E})=1$

The sum of the probabilities of all the elementary events of an experiment is 1.

