The Sigma Notation Σ

The Greek letter \sum (sigma) represent the sum.
The sigma notation is used to measure central tendency.

Sigma Notation : Introduction to Summation

Sigma Notation (Σ)

Example1.

$\sum_{i=1}^{5} i^{2}=1^{2}+2^{2}+3^{2}+4^{2}+5^{2}=55$
$\mathrm{i}=1$ on bottom tell us to start with $\mathrm{i}=1$
5 on top tells us to finish with i=5
For each number i that we count
$\mathrm{i}=1 \quad \mathrm{i}^{2}=1^{2}=1$
$\mathrm{i}=2 \quad \mathrm{i}^{2}=2^{2}=4$
$\mathrm{i}=3 \quad \mathrm{i}^{2}=3^{2}=9$
$i=4 \quad i^{2}=4^{2}=16$
$\mathrm{i}=5 \quad \mathrm{i}^{2}=5^{2}=25$
then the summation tells us the sum of the results.

Example2.

$$
\sum_{j=1}^{3}(2 j+5)=(2(1)+5)+(2(2)+5)+(2(3)+5)=27
$$

$$
\begin{array}{ll}
j=1: 2 j+5 & 2(1)+5=7 \\
j=2: 2 j+5 & 2(2)+5=9 \\
j=3: 2 j+5 & 2(3)+5=11
\end{array}
$$

Σ tells us the sum of results.
i.e $7+9+11=27$

Example3.

$\sum_{r=1}^{3} \frac{r}{2}=\frac{1}{2}+\frac{2}{2}+\frac{3}{2}=\frac{6}{2}=3$
We can write it as
$\sum_{j=1}^{3} \frac{j}{2}$
(here j and r are dummy indices)
We can use $i, j, k, r, m, n \ldots$ etc for indices.

* Simplification Rules: - Sigma Notation

A) Summation of constants.

Example

$$
\sum_{k=1}^{5} 3=3+3+3+3+3=3 * 5
$$

$$
=15
$$

$\sum_{r=1}^{6} 8=8 * 6=48$
We summing constants we can multiply the constant by the number of indices we count.
B) Commutative property of sigma notation.

Example

$\sum_{i=1}^{3} i^{3}+3 i=\left(1^{3}+3(1)\right)+\left(2^{3}+3(2)\right)+\left(3^{3}+3(3)\right)$

$$
\begin{aligned}
& =1^{3}+2^{3}+3^{3}+(3(1)+3(2)+3(3)) \\
& =\quad \sum_{i=1}^{3} i^{3}+\sum_{i=1}^{3} 3 i
\end{aligned}
$$

This is due to the commutative property

$$
a+b=b+a
$$

We can add the term in any order.

C) Distributive property of sigma notation

Example

$$
\begin{aligned}
& \sum_{i=1}^{3} i^{2}=14 \\
= & \sum_{i=1}^{3} 4 i^{2}=4\left(1^{2} 2+4\left(2^{) 2}+4(3)^{2}=4\left\{1^{2}+2^{2}+3^{2}\right\}\right.\right. \\
= & 4\left(\sum_{i=1}^{3} i^{2}\right)
\end{aligned}
$$

Thus we can write,
$\sum_{i=1}^{5} 5(i)^{3} \quad$ As $5 \sum_{i=1}^{5}(i)^{3}$

This is due to distributive property.
i.e $a(b+c)=a b+a c$

In other words, constants inside the summed expression can be pulled outside.

