DISTANCE FORMULA

Find the distance between the points whose co-ordinates are given.
Let $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ be two given points in the co-ordinate plane.
Draw PM, QN perpendicular on x-axis and PR perpendicular on NQ
From the figure.

$\mathrm{PR}=\mathrm{MN}=\mathrm{ON}-\mathrm{OM}$
$=X_{2}-X_{1}$
$R Q=N Q-N R=N Q-M P$
$=Y_{2}-Y_{1}$
From right angled
$\triangle P R Q$ BY Pythagoras
Theorem, we get
$P Q^{2}=P R^{2}+R Q^{2}$
$=\left(X_{2}-X_{2}\right)^{2}+\left(Y_{2}-Y_{2}\right)^{2}$ $P Q=\sqrt{\left.\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}\right)}$

Distance from origin (0,0)
$=\sqrt{\left.(\mathrm{x}-0)^{2}+(\mathrm{y}-0)^{2}\right)}$
$=\sqrt{x^{2}+y^{2}}$
Find the distance between the points $P(3,-5)$ and $Q(8,7)$
By Formula distance between the given points $=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

$$
\begin{aligned}
& =\sqrt{(8-3)^{2}+(7+5)^{2}} \\
& =\sqrt{5^{2}+12^{2}}
\end{aligned}
$$

$$
\begin{gathered}
=\sqrt{25+144} \\
=\sqrt{169} \\
=13 \text { units. }
\end{gathered}
$$

