Fast Growth, Slow Growth: Using Integer Exponents

1 Positive Integer Exponents

$$
\begin{array}{rlr}
9=3 \cdot 3 & =3^{2} \\
27 & =3 \cdot 3 \cdot 3 & =3^{3} \\
81 & =3 \cdot 3 \cdot 3 \cdot 3 & =3
\end{array}
$$

Exponents count how many times factors repeat in a number. 3^{4} is pronounced "three to the fourth power" or "three to the fourth."

Example

$248,832=12 \cdot 12 \cdot 12 \cdot 12 \cdot 12=12^{5}$

A note on pronunciation $44=4^{2}$ can be pronounced "four to the second"-but also "four squared." Similarly, $444=4^{3}$ can be pronounced "four to the third"-but also "four cubed."

2 Zero as an Exponent

$$
\begin{array}{lr}
1^{0}=1 & (2 \pi)^{0}=1 \\
2^{0}=1 & \dot{\Sigma}_{0}^{4}=1 \\
x^{3}
\end{array}
$$

$$
3^{0}=1
$$

Definition By the definition of exponents, any number, except for zero, raised to the zeroth power is one. Note that 0^{0} is undefined.

3 Negative Integer Exponents

		1	
$2-1=1$	1	-	2^{-3}
2	2	2^{-1}	
$2-2=1$	${ }_{\underline{1}}{ }^{1}$	1	
2	4	2^{-2}	
$2-3=1$	$\underbrace{1}$	1	
2	8		

$=2^{1}=2$
General rule
$x^{-n}=\begin{aligned} & 1 \\ & x^{n}\end{aligned}$

$$
-\begin{array}{cc}
1 & =x^{n} \\
x^{-n} &
\end{array}
$$

4 Scientific Notation

Mass of the Earth (kg)
$5,972,000,000,000,000,000,000,000$
$=5.972 \times 10^{24}$
Mass of an electron (kg)
0.0000000000000000000000000000009109
$=9.109 \times 10^{-31}$

Keep the significant digits, and there is always one digit to the left of the decimal.

