Fast Growth, Slow Growth: Using Integer Exponents

1 Positive Integer Exponents

 $9 = 3 \cdot 3 = 3^{2}$ 27 = 3 \cdot 3 \cdot 3 \cdot 3 = 3 \cdot 3 81 = 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 = 3 \cdot 4

Exponents count how many times factors repeat in a number. 3⁴ is pronounced "three to the fourth power" or "three to the fourth."

Example

248, 832 = $12 \cdot 12 \cdot 12 \cdot 12 \cdot 12 = 12^5$

A note on pronunciation $4 = 4^2$ can be pronounced "four to the second"—but also "four squared." Similarly, $4 = 4^3$ can be pronounced "four to the third"—but also "four cubed."

2 Zero as an Exponent

$1^0 = 1$	$(2\pi)^0 = 1$
$2^0 = 1$	$\dot{\Sigma}_{0}^{1} = 1$
	x^3
$3^0 = 1$	

Definition By the definition of exponents, any number, except for zero, raised to the zeroth power is one. Note that 0^0 is undefined.

3 Negative Integer Exponents

		1	2
2 -1 = 1	1 1	_	2 ⁻³
2	2	2 ⁻¹	
2- 2 = 1	_1 ≟	1	
2	4	2 -2	
2 -3 = 1	_1 ≟	-	
2	8		

$= 2^1 = 2$	= 2	$2^{2} = 4$	$= 2^3 = 8$
General rule			
$x^{-n} = 1$			
x^n			
_	1	$= x^n$	
	<i>x</i> - <i>n</i>		

4 Scientific Notation

Mass of the Earth (kg)

5, 972, 000, 000, 000, 000, 000, 000, 000

= 5.972 × 10²⁴

Mass of an electron (kg)

 $= 9.109 \times 10^{-31}$

Keep the significant digits, and there is always one digit to the left of the decimal.