Basic Probability Definitions: Joint Probabilities
 1 Introduction

Definition

joint probability -probability that two separate events with separate probability distribu- tions are both true
$P(A$ and $B)$ is written $P(A, B)$, and read "the joint probability of A and B " or "the prob- ability that A is true and B is true."

2 Order of joint probabilities

For probability distributions X and Y :

$$
\begin{aligned}
X & =\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\} \\
Y & =\left\{y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right\}
\end{aligned}
$$

Ordering does not matter in joint probabilities, for either the probability distributions or the individual events.

$$
\begin{aligned}
& P(X, Y)=P(Y, X) \\
& P\left(x_{1}, y_{1}\right)=P\left(y_{1}, x_{1}\right)
\end{aligned}
$$

3 Independence

Definition

independence-knowing the outcome of one event does not change the probability of the other
The probability of two independent events:

Venn diagrams-show the intersection and union of sets

OR probability

Probability that either of two events occurs:

$$
P\left(x_{1} \text { or } y_{1}\right)=P\left(x_{1}\right)+P\left(y_{1}\right)-P\left(x_{1}, y_{1}\right)
$$

Venn diagram:

