Basic Probability Definitions: Probability Definitions and Notation Introduction

Definition
probability -the degree of belief in the truth orfalsity of a statement
Range of uncertainty from 0 to 1
Certain statement is true: probability 1 Certain
statement is false: probability 0

Example Statement X : "It is raining."

1 Notation

$P(X)$ probability of X
$\sim X$ negation of statement X

Law of excluded middle

$$
P(x)+P(\sim x)=1
$$

Probability of a statement and the probability of the negation of a statement must sum to 1 .
If $P(\boldsymbol{X})=1$, then $P(\sim \boldsymbol{x})=0$, and vice versa.
In general, all outcomes of a probability distribution must sum to 1 .

Definitions

probability distribution-collection of statements that are exclusive and exhaustive exclusive-given complete information, no more than one of the statements can be true exhaustive_given complete information, at least one of the statements must be true A
distribution X consisting of n statements would be denoted

$$
X=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\}
$$

The probability of each statement must sum to 1 , which is denoted.

$$
P\left(x_{1}\right)+P\left(x_{2}\right)+P\left(x_{3}\right)+\ldots+P\left(x_{n}\right)=1 .
$$

2 Principle of indifference

For the \boldsymbol{i}-th outcome X_{i} in a distribution with n possible outcomes, P

$$
\left(X_{1}\right)=\frac{1}{n}
$$

Example: Drawing an ace of spades from a well-shuffled deck of 52 cards. The probability of drawing the ace of spades is $\frac{1}{52}$

General statement

When there is no basis to choose some outcomes as more likely than others, number of outcomes as defined in event
$P($ event $)=$
total number of possible outcomes in universe

Example: Event is drawing a queen, which has four outcomes in the event. The total number of outcomes is 52 , so the probability of drawing a queen is ${ }^{4}={ }^{\perp}$.

Example: Event is rolling an even number on a six-sided die, which has three outcomes in the event. The total number of outcomes is 6 , so the probability of rolling an even is ${ }^{3}=1$.

