Basic Probability Definitions: Probability Definitions and Notation Introduction

Definition

Range of uncertainty from 0 to 1 Certain statement is true: probability 1 Certain statement is false: probability 0

Example Statement *X*: "It is raining."

1 Notation

 $P(\mathbf{X})$ probability of \mathbf{X}

 $\sim x$ negation of statement x

Law of excluded middle

 $P(\mathbf{x}) + P(\mathbf{x}) = 1$

Probability of a statement and the probability of the negation of a statement must sum to 1.

If $P(\mathbf{x}) = 1$, then $P(\mathbf{x}) = 0$, and vice versa.

In general, all outcomes of a probability distribution must sum to 1.

Definitions

probability distribution—collection of statements that are *exclusive* and *exhaustive exclusive*—given complete information, no more than one of the statements can be true *exhaustive*—given complete information, at least one of the statements must be true A

distribution X consisting of n statements would be denoted

 $X = \{x_1, x_2, x_3, \dots, x_n\}.$

The probability of each statement must sum to 1, which is denoted.

 $P(x_1) + P(x_2) + P(x_3) + \dots + P(x_n) = 1.$

2 Principle of indifference

For the *i*-th outcome x_i in a distribution with *n* possible outcomes, $P_{(X_1)} = \frac{1}{n}$

Example: Drawing an ace of spades from a well-shuffled deck of 52 cards. The probability of drawing the ace of spades is $\frac{1}{52}$

General statement

When there is no basis to choose some outcomes as more likely than others,

number of outcomes as defined in event

P (event) =

total number of possible outcomes in universe

.

Example: Event is drawing a queen, which has four outcomes in the event. The total number of outcomes is 52, so the probability of drawing a queen is⁴ = $\frac{1}{52}$.

Example: Event is rolling an even number on a six-sided die, which has three outcomes in the event. The total number of outcomes is 6, so the probability of rolling an even is² = $\frac{1}{6}$.

2